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Modeling gene regulatory 
networks by means of piecewise-
linear models 



INRIA Grenoble - Rhône-Alpes and IBIS 

• IBIS: systems biology group at INRIA/Université Joseph Fourier/CNRS 

– Analysis of bacterial regulatory networks by means of models and 

experiments 

– Biologists, computer scientists, mathematicians, physicists, … 
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http://ibis.inrialpes.fr 



Course overview 

• Gene regulatory networks 

• Piecewise-linear models of gene regulatory networks 

• Solutions of piecewise-linear models 

• Qualitative analysis of gene regulatory networks 

• Numerical simulation of gene regulatory networks 

• Conclusions 
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Bacterial growth 

• Bacteria are unicellular organisms geared towards growth 

and division 

 Escherichia coli cells have doubling times up to 20 min  

 

Stewart et al. (2005), PLoS Biol., 3(2): e45 
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Bacterial growth 

• Bacteria are unicellular organisms geared towards growth 

and division 

• Growth and division require replication of cellular contents 
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• Cell composition (% total cell mass): 

─ Proteins (~60%) 

─ RNA (~15%) 

─ DNA (~3%) 

─ Other 

 

Goodsell (2010), The Machinery of 

Life, Springer, 2nd ed. 

Bremer and Dennis (1996), Escherichia Coli and 

Salmonella, ASM Press, 1553-69 



Proteins 

• Proteins are essential for cellular functioning 

 Single E. coli cell contains1900 different kinds of protein and 2.4·106 

protein molecules 
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Proteins and metabolism 

• Proteins are essential for cellular 

functioning 

• Proteins catalyze metabolic reactions 

that convert nutrients into energy and 

building blocks necessary for growth 

Enzymes 
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Fischer et al. (2004), Anal. Biochem., 325(2):308–16 



Proteins and metabolism 

• Proteins are essential for cellular 

functioning 

• Proteins catalyze metabolic reactions 

that convert nutrients into energy and 

precursors necessary for growth 

Enzymes 
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Fischer et al. (2004), Anal. Biochem., 325(2):308–16 



Proteins and gene expression 

• Proteins are essential for cellular functioning 

• Proteins compose molecular machines that synthesize new 

proteins from genetic information (DNA) 

RNA polymerase and ribosome 
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Changes in protein contents of cell 

• Cells need to be able to adapt protein contents to changes 

in environment 

• Bacterial cells are able to grow on different carbon sources 

Preferential utilisation: diauxic growth on glucose and lactose 

 

 

 

 

 

 

 

 

• Uptake and utilization of different carbon sources requires 

specific proteins (enzymes) 
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Bettenbrock et al. (2006), J. Biol. Chem., 

281(5):2578-84 



Changes in protein contents of cell 

• Global reorganisation of gene 

expression upon adaptation to 

different carbon source  

 mRNA levels during glucose-lactose 

shift in E. coli 
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Traxler et al. (2006), Proc. Natl. Acad. Sci. USA, 103(7):2374–9 



Regulation of gene expression 

• Bacterial cell controls protein contents through regulation 

of gene expression 

– Transcription regulation by transcription factors 

– Translation regulation by translation inhibitors 

– Regulation of degradation by proteases 
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Regulation of gene expression 

• Bacterial cell controls protein contents through regulation 

of gene expression 

– Transcription regulation by transcription factors 

– Translation regulation by translation inhibitors 

– Regulation of degradation by proteases 

  

 

 

 

 

 

 

• Many regulators are proteins! 
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Baldazzi et al. (2010), PLoS 

Comput. Biol., 6(6):e1000812 

Regulatory networks 

• Cellular response to external perturbations controlled by 

complex regulatory networks 

– Variety of molecular mechanisms… 

– … operating on different time-scales… 

– … involving numerous feedback loops across levels 
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Gene regulatory networks 

• Gene regulatory network is abstraction of regulatory 

network, focusing on interactions between genes and their 

products (proteins) 
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• Gene regulatory networks 

include both direct and 

indirect interactions 

  

Brazhnik et al. (2002), Trends Biotechnol., 20(11):467-72 



Gene regulatory networks 

• Gene regulatory network is abstraction of regulatory 

network, focusing on interactions between genes and their 

products (proteins) 
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• Gene regulatory networks 

include both direct and 

indirect interactions 

  Sporulation and 

competence in 

B. subtilis 

Schultz et al. (2000), Proc. Natl. Acad. Sci., 106(50):21027-34  



Systems biology 

• Most gene regulatory networks of biological interest are large 

and complex 

• No global view of functioning of network available, despite 

abundant knowledge on network components 

 Understanding of dynamics requires experimental tools for monitoring 

gene expression over time  

 Understanding of dynamics requires mathematical modeling and 

computer analysis and simulation 

 Discipline now often referred to as systems biology 

 

 

 

Alon (2007), An Introduction to Systems Biology, Chapman & Hall/CRC Press 
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Modeling of gene regulatory networks 

• Modeling of gene regulatory networks amount to modeling of 

gene expression and regulation of gene expression 

 

 

 

 

• Aims of modeling gene regulatory networks: 

– Understanding role of individual components and interactions 

– Suggesting missing components and interactions  

• Advantages of mathematical and computer tools: 

– Precise and unambiguous description of network 

– Systematic derivation of predictions of network behavior 
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Modeling of gene regulatory networks 

• Modeling of gene regulatory networks amount to modeling of 

gene expression and regulation of gene expression 

 

 

 

 

• First models of gene regulatory networks date back to early 

days of molecular biology 

Feedback circuits and oscillators 

 

 

 
Goodwin (1963), Temporal Organization in Cells 
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Modeling of gene regulatory networks 

• Different modeling formalisms exist, describing gene 

expression on different levels of detail 

 

 

Ordinary differential 

equations (ODEs) 

Stochastic master 

equations 
Boolean 

networks 

coarse-grained detailed 

Smolen et al. (2000), Bull. Math. Biol., 62(2):247-292 

Hasty et al. (2001), Nat. Rev. Genet., 2(4):268-279 

de Jong (2002), J. Comput. Biol., 9(1): 69-105 

Szallassi et al. (2006), System Modeling in Cellular Biology, MIT Press 

Bolouri (2008), Computational Modeling of Gene Regulatory Networks, Imperial 

College Press 

Karleback and Shamir (2008), Nat. Rev. Mol. Cell Biol., 9(10):770-80  

 20 



Course overview 

• Gene regulatory networks 

• Piecewise-linear models of gene regulatory networks 

• Solutions of piecewise-linear models 

• Qualitative analysis of gene regulatory networks 

• Numerical simulation of gene regulatory networks 

• Conclusions 
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Modeling of gene regulatory networks 

• Well-established theory for modeling gene regulatory networks 

using ordinary differential equation (ODE) models 

• Gene expression involves large number of individual reactions 

 

 

 

 

 

 

• In principle possible to model gene expression by biochemical 

reaction rate equations, but not convenient in practice 
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Transcription initiation 

Record Jr et al. (1996), Escherichia Coli and Salmonella, 

ASM Press, 792-821 

Transcription initiation 



Modeling of gene regulatory networks 

• Practical problems encountered by modelers: 

– Knowledge on molecular mechanisms rare 

– Quantitative information on kinetic parameters and molecular 

concentrations absent 

– Large models 

• Intuition: essential properties of network dynamics robust 

against reasonable model simplifications 

 

 

 23 



Simplifying assumptions 

• Assume that gene expression machinery and precursor pools 

remain constantly available  
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Simplifying assumptions 

• Assume that gene expression machinery and precursor pools 

remain constantly available  
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Simplifying assumptions 

• Assume that gene expression machinery and precursor pools 

remain constantly available  

• Assume that transcription and translation can be lumped into a 

single step 
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Simplifying assumptions 

• Assume that gene expression machinery and precursor pools 

remain constantly available  

• Assume that transcription and translation can be lumped into a 

single step 

• Describe regulatory effect by sigmoidal response curve 
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Simplifying assumptions 

• Assume that gene expression machinery and precursor pools 

remain constantly available  

• Assume that transcription and translation can be lumped into a 

single step 

• Describe regulatory effect by sigmoidal response curve 

• Approximate sigmoidal response by step response 
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Piecewise-linear models 

• Piecewise-linear models of gene regulatory networks 

 29 

Glass and Kauffman (1973), J. Theor. Biol., 39(1):103-29 

Protein concentrations 

Synthesis, degradation parameters (positive) 

Regulation function, affine w.r.t. step functions: 

, 

Threshold parameter (positive) 



Piecewise-linear models 

• Piecewise-linear model of simple cross-activation network 

 

 

 

 

 

 

 

 

• Combinatorial regulation of gene expression (AND, OR, …) 

Relation with discrete, logical models 
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Thomas and d’Ari (1990), Biological Feedback, CRC Press 

Kauffman (1993), The Origins of Order, Oxford University Press 



Course overview 

• Gene regulatory networks 

• Piecewise-linear models of gene regulatory networks 

• Solutions of piecewise-linear models 

• Qualitative analysis of gene regulatory networks 

• Numerical simulation of gene regulatory networks 

• Conclusions 
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Decomposition of phase space 

• Dynamics studied in n-dimensional phase space 

 

• Thresholds decompose phase space into set of 

hyperrectangular domains 

– Switching variables 

– Regulatory domains 

– Switching domains 
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de Jong et al. (2004), Bull. Math. Biol., 66(2):301-40 



Decomposition of phase space 

• Dynamics studied in n-dimensional phase space 

 

• Thresholds decompose phase space into set of 

hyperrectangular domains 

– Switching variables 

– Regulatory domains 

– Switching domains 

• Domains in boundary of 

 

• Regulatory domains with                                                         

in boundary  
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de Jong et al. (2004), Bull. Math. Biol., 66(2):301-40 



Focal points 

• Rewrite system in vector form: 

 

 

• For every regulatory domain              

      ,           is constant for 

all  
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Focal points 

• Rewrite system in vector form: 

 

 

• For every regulatory domain              

      ,           is constant for 

all  
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Casey et al. (2006), J. Math. Biol., 52(1):27-56 

• Solutions in regulatory domains flow towards 

focal point 

Glass and Kauffman (1973), J. Theor. Biol., 39(1):103-29 



Focal points 

• Rewrite system in vector form: 

 

 

• For every regulatory domain              

      ,           is constant for 

all  
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Casey et al. (2006), J. Math. Biol., 52(1):27-56 

• Solutions in regulatory domains flow towards 

focal point 

Glass and Kauffman (1973), J. Theor. Biol., 39(1):103-29 



Focal points 

• Rewrite system in vector form: 

 

 

• For every regulatory domain              

      ,           is constant for 

all 
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• Different regulatory domains may have 

different focal points 

• Change of dynamics when crossing 

threshold 



Filippov solutions 

• System is not well-defined at threshold hyperplanes, where 

discontinuities occur  
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Casey et al. (2006), J. Math. Biol., 52(1):27-56 



Filippov solutions 

• System is not well-defined at threshold hyperplanes, where 

discontinuities occur  

• Filippov extension of piecewise-linear model to differential 

inclusion 

where in regulatory domains 

 

and in switching domains 

 39 

Gouzé and Sari (2002), Dyn. Syst., 17(4):299-316 

(1) 

(1) 

Filippov (1988), Differential Equations with Discontinuous Right Hand Sides, Kluwer 



Filippov solutions 

• System is not well-defined at threshold hyperplanes, where 

discontinuities occur  

• Filippov extension of piecewise-linear model to differential 

inclusion 

where in regulatory domains 

 

and in switching domains 

 

 

 

• Existence of solutions guaranteed, but not uniqueness! 
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Gouzé and Sari (2002), Dyn. Syst., 17(4):299-316 

(1) 

Filippov (1988), Differential Equations with Discontinuous Right Hand Sides, Kluwer 



Filippov solutions 

• System is not well-defined at threshold hyperplanes, where 

discontinuities occur  

• Filippov extension of piecewise-linear model to differential 

inclusion 

where in regulatory domains 

 

and in switching domains 

 

 

• Other extensions have been proposed in the literature, e.g., 

Aizerman–Pyatnitskii extensions 

 Equivalent for piecewise-linear systems considered here under mild 

modeling assumption 
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(1) 

Machina  and Posonov (2011), Nonlinear. Anal., 74(3):882-900 

Acary et al.(2014), Physica D, 269:103-19 



Focal sets 

• Generalization of focal points to focal sets 
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Casey et al. (2006), J. Math. Biol., 52(1):27-56 



Focal sets 

• Generalization of focal points to focal sets 

 

 

 

 

 

 

• Sliding modes in switching domains occur under the 

condition that  
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Casey et al. (2006), J. Math. Biol., 52(1):27-56 



Focal sets 

• Examples of focal sets 

 

 

 

 

 

 

 

• Focal set not necessarily a point! 
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Ф(D14) 

Ф(D6) = {} 

Casey et al. (2006), J. Math. Biol., 52(1):27-56 



Focal sets 

• Examples of focal sets 

 

 

 

 

 

 

 

• Technical assumption: focal set of domain not located in 

support of boundary   

 45 

Ф(D14) 

Ф(D6) = {} 



Focal sets and convergence 

• Monotonic convergence of solutions towards focal set 

 

 

• Weaker convergence result if focal set is not a point (     a 

switching domain) 
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Casey et al. (2006), J. Math. Biol., 52(1):27-56 



Focal sets and equilibrium points 

• Some focal sets correspond to « equilibria » of the system 

 

 

• If      is a switching domain, generalization of notions of 

equilibrium point and stability required  

–             is an equilibrium point if  

– If                  , then every                    is an equilibrium point and      

 an equilibrium set 

– Stable and weakly (asymptotically) stable equilibrium sets 
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Casey et al. (2006), J. Math. Biol., 52(1):27-56 



Focal sets and equilibrium points 

• Examples of equilibrium points 

– Cross-activation network is bistable 
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Casey et al. (2006), J. Math. Biol., 52(1):27-56 



Course overview 

• Gene regulatory networks 

• Piecewise-linear models of gene regulatory networks 

• Solutions of piecewise-linear models 

• Qualitative analysis of gene regulatory networks 

• Numerical simulation of gene regulatory networks 

• Conclusions 
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Recap 

• Piecewise-linear models can be used to model dynamics of 

gene regulatory networks 

 50 



Recap 

• Piecewise-linear models can be used to model dynamics of 

gene regulatory networks 

• Piecewise-linear models studied by partitioning of phase 

space into regions 

Regulatory domains and switching domains 
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Recap 

• Study of dynamics in regulatory domains straightforward 

Monotonic convergence towards focal point 
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Recap 

• Study of dynamics in regulatory domains straightforward 

Monotonic convergence towards focal state 

• Study of dynamics in switching domains requires extension 

of differential equations to differential inclusions (Filippov) 
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Recap 

• Dynamics in switching domains determined by focal sets 
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Ф(D14) 

Ф(D6) = {} 



Recap 

• Sliding modes in switching domains occur if 

• In case of sliding modes, (weak) monotonic convergence 

towards focal sets in switching domains 

• If                  , then every                    is an equilibrium point 

and             the equilibrium set 
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Transitions between domains 

• Set of domains     can be thought of as qualitative states 

 System behaves in qualitatively homogeneous manner in each 

domain: (quasi-)monotonic convergence towards focal set 
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Transitions between domains 

• Set of domains     can be thought of as qualitative states 

 System behaves in qualitatively homogeneous manner in each 

domain: (quasi-)monotonic convergence towards focal set 

• Transition from domain      to     , if there is a solution (in the 

sense of Filippov) starting in     and reaching 

    is set of switching domains in boundary of  

 57 

Casey et al. (2006), J. Math. Biol., 52(1):27-56 



Transitions between domains 

• Examples of transitions 
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Transitions between domains 

• Transition follows from relative position of focal set 
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Casey et al. (2006), J. Math. Biol., 52(1):27-56 



Transitions between domains 

• Transition follows from relative position of focal set 
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Casey et al. (2006), J. Math. Biol., 52(1):27-56 



State transition graph 

• State transition graph: directed graph with nodes that are 

domains and edges that are transitions between domains 

 Discrete representation of qualitative dynamics of piecewise-linear 

system 

 

 

 

 

 

 

 

 

• Paths, cycles, and attractors in graph 
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State transition graph 

• State transition graph: directed graph with nodes that are 

domains and edges that are transitions between domains 

 Discrete representation of qualitative dynamics of piecewise-linear 

system 

 

 

 

 

 

 

 

 

• Paths, cycles, and attractors in graph 
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State transition graph as discrete abstaction 

• Formal definition of state transition graph as discrete 

abstraction 

– Definition of piecewise-linear system as continuous transition 

system having same reachability properties 

– Definition of equivalence relation 

– Definition of discrete abstraction as quotient of continuous transition 

system  

– Resulting discrete transition system is state transition graph 

• State transition graph gives conservative approximation of 

continuous dynamics 

– Every Filippov solution of piecewise-linear model corresponds to path 

in state transition graph 

– Converse is not generally true!  

 63 

Alur et al. (2000), Proc. IEEE, 88(7):971-84 

Batt et al. (2008), Automatica, 44(4):982-9 

de Jong et al. (2004), Bull. Math. Biol., 66(2):301-40 



Analysis of state transition graph 

• Under certain conditions, the attractors of the graph 

correspond to stable equilibrium sets 
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Casey et al. (2006), J. Math. Biol., 52(1):27-56 



Analysis of state transition graph 

• Under certain conditions, the attractors of the graph 

correspond to stable equilibrium sets 
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Casey et al. (2006), J. Math. Biol., 52(1):27-56 



Analysis of state transition graph 

• Under certain conditions, the attractors of the graph 

correspond to stable equilibrium sets 

 

 

 

 

 

 

 

• Other conjecture of graph-based stability criteria, recently 

proven 

 66 

Casey et al. (2006), J. Math. Biol., 52(1):27-56 

Wang (2012), Physica D, 246(1):39-49 



Analysis of state transition graph 

• Under certain conditions, the attractors of the graph 

correspond to unstable equilibrium sets 
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Casey et al. (2006), J. Math. Biol., 52(1):27-56 



Analysis of state transition graph 

• Under certain conditions, cycles in the graph correspond to 

limit cycles in the piecewise-linear systems 
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Glass and Pasternack (1978), J. Math Biol., 6(2):207-23 

Edwards (2000), Physica D, 146(1-4):165-99 



Analysis of state transition graph 

• Paths in state transition graph provide information on basins 

of attraction 
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Analysis of state transition graph 

• Paths in state transition graph provide information on basins 

of attraction 

• Paths in state transition graph provide information on 

possible sequences of qualitative events from initial state 

Threshold crossings 
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Robustness of state transition graph 

• Intuition: state transition graph provides robust picture of 

qualitative dynamics 

 Transitions defined by relative position of focal set, not specific 

parameter values 
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Robustness of state transition graph 

• Intuition: state transition graph provides robust picture of 

qualitative dynamics 

• If          is hyperrectangular, then the state transition graphs 

are isomorphic for given set of parameter inequalities  

 Total strict ordering of threshold parameters and focal point 

coordinates for each variable fixes state transition graph 
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Batt et al. (2008), Automatica, 44(4):982-9 

de Jong et al. (2004), Bull. Math. Biol., 66(2):301-40 



Robustness of state transition graph 

• Intuition: state transition graph provides robust picture of 

qualitative dynamics 

• If          is hyperrectangular, then the state transition graphs 

are isomorphic for given set of parameter inequalities  

 Total strict ordering of threshold parameters and focal point 

coordinates for each variable fixes state transition graph 
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Robustness of state transition graph 

• Intuition: state transition graph provides robust picture of 

qualitative dynamics 

• If          is hyperrectangular, then the state transition graphs 

are isomorphic for given set of parameter inequalities  

 Total strict ordering of threshold parameters and focal point 

coordinates for each variable fixes state transition graph 

• Exact parameter values difficult to obtain, but parameter 

inequalities can be inferred from data! 
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Robustness of state transition graph 

• Intuition: state transition graph provides robust picture of 

qualitative dynamics 

• If          is hyperrectangular, then the state transition graphs 

are isomorphic for given set of parameter inequalities 

•          is hyperrectangular under mild modeling assumptions 

for piecewise-linear models considered here 
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Acary et al.(2014), Physica D, 269:103-19 



Robustness of state transition graph 

• Intuition: state transition graph provides robust picture of 

qualitative dynamics 

• If          is hyperrectangular, then the state transition graphs 

are isomorphic for given set of parameter inequalities 

•          is hyperrectangular under mild modeling assumptions 

for piecewise-linear models considered here 
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Acary et al.(2014), Physica D, 269:103-19 



Genetic Network Analyzer 

• Genetic Network Analyzer is computer tool for qualitative 

analysis of piecewise-linear models of gene networks: 

– Formulation of gene regulatory network structure 

– Definition of piecewise-linear models and parameter inequalities 

– Generation of (implicit and explicit) state transition graphs using 

symbolic algorithms (applicable when          is hyperrectangular) 

– Visual analysis of state transition graphs 

– Analysis of graph properties by means of model-checking tools  

– Export of models to numerical simulation tools 

 

 

 

 77 

      de Jong et al. (2003), Bioinformatics, 19(3):336-44 

Monteiro et al. (2008), Bioinformatics, 24(16):i227-33 

Monteiro et al., (2009), BMC Bioinform., 10:450  

Batt et al. (2005), Bioinformatics, 21(supp. 1): i19-i28   



Genetic Network Analyzer 

• Genetic Network Analyzer is computer tool for qualitative 

analysis of piecewise-linear models of gene networks 
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http://www-helix.inrialpes.fr/gna 



Analysis of bacterial regulatory networks 

• Applications of qualitative analysis in 

bacteria: 

– Initiation of sporulation in Bacillus subtilis  

 

 

– Quorum sensing in Pseudomonas 

aeruginosa 

 

 

– Onset of virulence in Erwinia 

chrysanthemi 

 

 

de Jong, Geiselmann et al. (2004), Bull. Math. Biol., 66(2):261-300 

Viretta and Fussenegger (2004), Biotechnol. Prog., 

20(3):670-8 

Sepulchre et al. (2007), J. Theor. Biol., 244(2):239-57  
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Biodegradation of polluants by P. putida 

• Soil bacterium Pseudomonas putida mt-2 is archetypal 

model for environmental biodegradation of aromatic 

pollutants 

 TOL network involved in degradation of m-xylene to intermediates for 

central carbon metabolism 

Rocha-Silva et al. (2011), Environ. Microbiol., 13(9):2389-402 
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Role of regulators of TOL network 

• Question: what is the role of the central, plasmid-encoded 

regulators XylR and XylS? 

 

 

 

 

 

 

 

• Development of piecewise-linear model of TOL network 

 Translation of network diagram into regulatory logic and model 

 

 

 

Rocha-Silva et al. (2011), BMC Syst. Biol., 5:191 
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Role of regulators of TOL network 

• Validation of model by testing predictions under different 

perturbation conditions (mutants, metabolic inducers, …) 

 

 

 

 

 

• Plasmid-encoded regulators of TOL network act as 

regulatory firewall  

 Prevent toxic m-xylene and its biodegradation intermediates from 

intervening with indigenous metabolic pathways 

Rocha-Silva et al. (2011), BMC Syst. Biol., 5:191 
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IRMA: synthetic network in yeast 

• IRMA: synthetic network in 

yeast consisting of interlocked 

positive and negative 

feedback loops 

 Network functions independently 

from host cell 

• Network can be externally 

controlled by growing cells in 

glucose or galactose 

 

Cantone et al. (2009), Cell, 137(1):172-81 
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IRMA: synthetic network in yeast 

• IRMA proposed as a 

benchmark for modeling and 

identification approaches 

• IRMA dynamics measured over 

time in galactose (switch-on) 

and glucose (switch-off) 

 Quantitative RT-PCR  

• Question: are measured 

dynamics consistent with 

constructed network structure? 

Cantone et al. (2009), Cell, 137(1):172-81 
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Test of consistency structure-dynamics 

• Development of (unparametrized) piecewise-linear model 

representing network structure 

• Approach to test consistency between network structure and 

data based on automated parameter constraint search: 

– Generate temporal logic formulae encoding observed network dynamics 

Batt et al. (2010), Bioinformatics, 

26(18):i603-10   
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Test of consistency structure-dynamics 

• Development of (unparametrized) piecewise-linear model 

representing network structure 

• Approach to test consistency between network structure and 

data based on automated parameter constraint search: 

– Generate temporal logic formulae encoding observed network dynamics 

– Test if there are any parametrizations of piecewise-linear model 

satisfying temporal logic formulae 
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Test of consistency structure-dynamics 

• Development of (unparametrized) piecewise-linear model 

representing network structure 

• Approach to test consistency between network structure and 

data based on automated parameter constraint search: 

– Generate temporal logic formulae encoding observed network dynamics 

– Test if there are any parametrizations of piecewise-linear model 

satisfying temporal logic formulae 

– Analyze parametrizations for biological plausibility 
 
« Activation threshold of CBF1 by Swi5 higher than activation 

threshold of ASH1 »: confirmed by independent experimental data 

Batt et al. (2010), Bioinformatics, 

26(18):i603-10   
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Test of consistency structure-dynamics 

• Development of (unparametrized) piecewise-linear model 

representing network structure 

• Approach to test consistency between network structure and 

data based on automated parameter constraint search: 

– Generate temporal logic formulae encoding observed network dynamics 

– Test if there are any parametrizations of piecewise-linear model 

satisfying temporal logic formulae 

– Analyze parametrizations for biological plausibility 

• Automated approach for testing consistency based on model-

checking techniques 

 Symbolic encoding of model, dynamics and properties to make problem 

feasible 
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Course overview 

• Gene regulatory networks 

• Piecewise-linear models of gene regulatory networks 

• Solutions of piecewise-linear models 

• Qualitative analysis of gene regulatory networks 

• Numerical simulation of gene regulatory networks 

• Conclusions 

89 



Qualitative analysis vs numerical simulation 

• GNA is qualitative simulation tool allowing coarse-grained 

dynamics of piecewise-linear (PWL) models to be analyzed 

• However, for many purposes qualitative analysis is not 

adequate 

– Analysis of limit cycle 

– Design of synthetic controller network 

• Demand for appropriate numerical tools, capable of 

dealing with differential inclusions 

90 



F-extensions of piecewise-linear models 

• Extension of PWL model using classical Filippov approach: 

F-extensions 

91 

Gouzé and Sari (2002), Dyn. Syst., 17(4):299-316 



PA-extensions of piecewise-linear models 

• Extension of PWL model using alternative Aizermann- 

Pyatnitskii (PA)-extensions 

92 

Machina  and Posonov (2011), Nonlinear. Anal., 74(3):882-900 



PA-extensions of piecewise-linear models 

• Extension of PWL model using alternative Aizermann- 

Pyatnitskii (PA)-extensions 
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Machina  and Posonov (2011), Nonlinear. Anal., 74(3):882-900 



Comparison of F and PA-extensions 

• In general, the two extensions are not equivalent 

– PA-extensions are not generally convex 

– PA-extensions do not guarantee existence of solutions 

– F-extensions contain PA-extensions 
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• In general, the two extensions are not equivalent 

– PA-extensions are not generally convex 
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– F-extensions contain PA-extensions 
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Comparison of F and PA-extensions 

• In general, the two extensions are not equivalent 

• But: equivalency obtained under the two assumptions 

 

– Satisfied for regulation functions equivalent to Boolean functions 

 

– Weak modeling assumption, not constraining in practice 
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Comparison of F and PA-extensions 

• In general, the two extensions are not equivalent 

• But: equivalency obtained under the two assumptions 
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Comparison of F and PA-extensions 

• In general, the two extensions are not equivalent 

• But: equivalency obtained under the two assumptions 
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PWL models and complementarity systems 

• Transformation of PA-extension to mixed complementarity 

system allows application of powerful numerical tools 

 

• Principle of approach: 

1. Reformulation of set-valued relation 

 

 as inclusion into normal cone, complementarity problem (CP) and 

variational inequalities (VI) 

2. Definition of implicit event-capturing time-stepping scheme (backward 

Euler scheme), capable of dealing with switches and sliding motion 

3. Use of numerical solver for one-step problem, resulting from CP/VI 

formulation. Efficient enumeration of possible solutions. 

4. Use of solvers in Siconos platform (http://siconos.gforge.inria.fr) 
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Simulation of example network 

• Piecewise-linear model of simple cross-activation network 
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Simulation of example network 

• Equilibrium points on 

threshold hyperplanes 

reproduced 

• Sliding mode on threshold 

hyperplanes without 

chattering 

• Finite-time stability of 

equilibrium points on 

threshold hyperplanes 

• Rapid and easy-to-use  

simulation tool 
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Simulation of synthetic network 

• Repressilator 
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Elowitz and Leibler (2000), Nature, 403(6767):335-8  



Simulation of synthetic network 

• Oscillator with positive 

feedback 
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Atkinson et al. (2003), Cell, 113(5):597-608 



Simulation of synthetic network 

• IRMA network 
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Cantone et al. (2009), Cell, 137(1):172-81 



Conclusions 

• Gene regulatory networks can be modeled by piecewise-

linear models 

• Analysis of piecewise-linear model requires extension of 

differential equations to differential inclusions 

• Piecewise-linear models are simple enough to allow robust, 

qualitative analysis of dynamics 

• Numerical tools can be used to provide higher quantitative 

precision and resolve ambiguities in qualitative analysis 

• Piecewise-linear models are tools, appropriate for certain 

kind of questions but not for others 

 106 



Contributors 

 107 

Vincent Acary, INRIA Grenoble-Rhône-Alpes 

Grégory Batt, INRIA Paris-Rocquencourt 

Bernard Brogliato, INRIA Grenoble-Rhône-Alpes 

Johannes Geiselmann, Université Joseph Fourier, Grenoble 

Jean-Luc Gouzé, INRIA Sophia-Antipolis – Méditerranée 

Pedro Monteiro, IST Lisbon 

Michel Page, Université Pierre Mendès-France, Grenoble 

Delphine Ropers, INRIA Grenoble-Rhône-Alpes 

Tewfik Sari, Irstea, Montpellier 

 

 



Merci ! 

www.inrialpes.fr/ibis 


